Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available May 15, 2026
- 
            Free, publicly-accessible full text available May 15, 2026
- 
            The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a reproducibility crisis has spurred significant research in the past few years. Yet with each paper, it is often unclear what someone means by reproducibility. Our work attempts to clarify the scope of reproducibility as displayed by the community at large. In doing so, we propose to refine the research to eight general topic areas. In this light, we see that each of these areas contains many works that do not advertise themselves as being about reproducibility, in part because they go back decades before the matter came to broader attention.more » « lessFree, publicly-accessible full text available April 11, 2026
- 
            The global rise in mental disorders, particularly in workplaces, necessitated innovative and scalable solutions for delivering therapy. Large Language Model (LLM)-based mental health chatbots have rapidly emerged as a promising tool for overcoming the time, cost, and accessibility constraints often associated with traditional mental health therapy. However, LLM-based mental health chatbots are in their nascency, with significant opportunities to enhance their capabilities to operate within organizational contexts. To this end, this research seeks to examine the role and development of LLMs in mental health chatbots over the past half-decade. Through our review, we identified over 50 mental health-related chatbots, including 22 LLM-based models targeting general mental health, depression, anxiety, stress, and suicide ideation. These chatbots are primarily used for emotional support and guidance but often lack capabilities specifically designed for workplace mental health, where such issues are increasingly prevalent. The review covers their development, applications, evaluation, ethical concerns, integration with traditional services, LLM-as-a-Service, and various other business implications in organizational settings. We provide a research illustration of how LLM-based approaches could overcome the identified limitations and also offer a system that could help facilitate systematic evaluation of LLM-based mental health chatbots. We offer suggestions for future research tailored to workplace mental health needs.more » « lessFree, publicly-accessible full text available March 31, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available January 1, 2026
- 
            The increasing societal concern for consumer information privacy has led to the enforcement of privacy regulations worldwide. In an effort to adhere to privacy regulations such as the General Data Protection Regulation (GDPR), many companies’ privacy policies have become increasingly lengthy and complex. In this study, we adopted the computational design science paradigm to design a novel privacy policy evolution analytics framework to help identify how companies change and present their privacy policies based on privacy regulations. The framework includes a self-attentive annotation system (SAAS) that automatically annotates paragraph-length segments in privacy policies to help stakeholders identify data practices of interest for further investigation. We rigorously evaluated SAAS against state-of-the-art machine learning (ML) and deep learning (DL)-based methods on a well-established privacy policy dataset, OPP-115. SAAS outperformed conventional ML and DL models in terms of F1-score by statistically significant margins. We demonstrate the proposed framework’s practical utility with an in-depth case study of GDPR’s impact on Amazon’s privacy policies. The case study results indicate that Amazon’s post-GDPR privacy policy potentially violates a fundamental principle of GDPR by causing consumers to exert more effort to find information about first-party data collection. Given the increasing importance of consumer information privacy, the proposed framework has important implications for regulators and companies. We discuss several design principles followed by the SAAS that can help guide future design science-based e-commerce, health, and privacy research.more » « lessFree, publicly-accessible full text available December 1, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
